Compactness Theorem

Danish A. Alvi

May 18, 2021

Abstract

Marker 2 elaborated a proof of Henkin's Construction for the Compactness Theorem. Halvorson 1 also provided a very friendly proof of the Henkin Construction of the Compactness Theorem. This proof presented in this write-up is primarily based on Wim Veldman's proof, with the gaps filled with the former two proofs. Note, this is a constructive proof of the Compactness Theorem, and therefore using Zorn's Lemma is not allowed. I would want to thank Kaspar Hagens from Radboud University, Nijmegen, for his helpful insights.

1 Henkin's Construction

Theorem 1.1. Let Γ be a theory in \mathcal{L}. If every finite subset of Γ has a model, then Γ itself has a finite or countable model.

Proof. The language \mathcal{L} contains relation symbols $\mathrm{R}_{0}, \ldots, \mathrm{R}_{m-1},=$, and function symbols $\mathrm{F}_{0}, \ldots, \mathrm{~F}_{\mathrm{n}-1}$, and individual constants c_{0}, \ldots, c_{p-1}. Let \mathcal{L}^{\prime} be the language obtained by adding to \mathcal{L} a countable sequence $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$ of new individual constants (please note that the constants are being added to the language, not the structure!). Now let $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$ be an enumeration of all (not only the true) sentences from the extended language \mathcal{L}^{\prime}. We now define an increasing sequence $\Delta_{0}, \Delta_{1}, \ldots$ of finite sets of sentences from \mathcal{L}^{\prime} via induction : $\Delta_{0}:=\emptyset$ and for each $n \in \mathbb{N}$,
$\Delta_{n+1}:=\Delta_{n} \quad$ if there exists a finite subset B of Γ such that $B \cup \Delta_{n} \cup\left\{\varphi_{n}\right\}$
$\Delta_{n+1}:=\Delta_{n} \cup\left\{\varphi_{n}\right\}$ has no model.
if for every finite subset B of Γ the set $B \cup \Delta_{n} \cup\left\{\varphi_{n}\right\}$ has a model
and the formula φ_{n} is not an existential formula, that is, it does not have the form $\exists x[\psi]$
$\Delta_{n+1}:=\Delta_{n} \cup\left\{\varphi_{n}, S_{\mathrm{a}_{m}}^{x} \psi\right\} \quad$ if φ_{n} has the form $\exists x[\psi]$ and for every finite subset B of Γ the set $B \cup \Delta_{n} \cup\left\{\varphi_{n}\right\}$ has a model and m is the least number k such that the individual constant a_{k} does not occur in φ_{n} and not in any formula from Δ_{n}.

Finally, we define $\Delta:=\bigcup_{n \in \mathbb{N}} \Delta_{n}$. We now observe that that Δ has the following properties :
(i) For every n, for every finite subset B of Γ, the set $B \cup \Delta_{n}$ has a model. We prove this by induction : for $n=0$, we know $B \cup \Delta_{0}=B$ has a model (as every finite subset of Γ has a model). Now, by induction hypothesis, assume $B \cup \Delta_{n-1}$ has a model. If we have the first case of the definition of Δ, then $\Delta_{n-1}=\Delta_{n}$ hence $B \cup \Delta_{n}$ has a model. If, instead, the second case applies, then $B \cup \Delta_{n-1} \cup\left\{\varphi_{n-1}\right\}$ has a model. Since $\Delta_{n}=\Delta_{n-1} \cup\left\{\varphi_{n-1}\right\}$,
$B \cup \Delta_{n}$ has a model. For the third case, we have that $B \cup \Delta_{n-1} \cup\left\{\varphi_{n-1}\right\}$ has a model (say \mathfrak{A}) and m is the least number k such that the individual constant a_{k} does not occur in φ_{n-1} and not in any formula from $\Delta_{n-1} \cdot \varphi_{n-1}$ is of the form $\exists x[\psi]$, therefore, by the definition of L-structure, there exists a b in $B \cup \Delta_{n-1} \cup\left\{\varphi_{n-1}\right\}$ such that $\mathfrak{A} \vDash \phi(b)$. Now we shall expand the structure \mathfrak{A} with the constant a_{k} (which was added to \mathcal{L}), having as interpretation b. Therefore, $B \cup \Delta_{n-1} \cup\left\{\varphi_{n-1}, S_{\mathrm{a}_{k}}^{x} \psi\right\}$ has as model $(\mathfrak{A}, \ldots, b)$. Substituting $\Delta_{n}=\Delta_{n-1} \cup\left\{\varphi_{n-1}, S_{\mathrm{a}_{k}}^{x} \psi\right\}$ gives us that $B \cup \Delta_{n}$ has a model.
(ii) $\Gamma \subseteq \Delta$. Let $\varphi \in \Gamma$. Determine m such that $\varphi=\varphi_{m}$. Since $\varphi_{m} \in \Gamma$, therefore, for any finite subset B of $\Gamma, B \cup\left\{\varphi_{m}\right\}$ is a finite subset of Γ, therefore, by (i), $B \cup \Delta_{m} \cup\left\{\varphi_{m}\right\}$ has a model. By the construction of $\Delta, \varphi_{m}=\varphi \in \Delta$.
(iii) For every n, either the sentence φ_{n} belongs to Δ or the sentence $\neg \varphi_{n}$ belongs to n. Suppose φ_{n} does not belong to Δ, therefore, we can determine a finite subset B_{0} of Δ such that $B_{0} \cup \Delta_{n} \cup\left\{\varphi_{n}\right\}$ has no model. We then determine m such that $\varphi_{m}=\neg \varphi_{n}$. We claim that for every finite subset B^{\prime} of Γ, the set $B^{\prime} \cup \Delta_{m} \cup\left\{\varphi_{m}\right\}$ has a model. Indeed, $B_{0} \cup B^{\prime} \cup \Delta_{m} \cup \Delta_{n}$ has a model (say \mathfrak{A}) via (i), because either $\Delta_{n} \subseteq \Delta_{m}$ or $\Delta_{m} \subseteq \Delta_{n}$ and $B_{0} \cup B^{\prime}$ is a finite subset of Γ. Now, since $B_{0} \cup \Delta_{n} \cup\left\{\varphi_{n}\right\}$ has no model, therefore $\mathfrak{A} \not \models \varphi_{n}$. By the definition of a model, $\mathfrak{A} \vDash \neg \varphi_{n}$. Therefore, $B^{\prime} \cup \Delta_{m} \cup\left\{\varphi_{m}\right\}$ has as model \mathfrak{A}. By the construction of $\Delta, \varphi_{m} \in \Delta_{m+1} \subset \Delta$.
(iv) For all sentences ψ in $\mathcal{L}^{\prime}, \neg(\psi)$ belongs to Δ if and only if ψ does not belong to Δ.
(\Rightarrow) Say $\neg \varphi \in \Delta$, let $\varphi_{m}=\neg \varphi$ and let $\varphi_{n}=\varphi$. Since φ_{m} belongs to Δ, by the construction of Δ, for any subset B_{0} of $\Gamma, B_{0} \cup \Delta_{m} \cup\left\{\varphi_{m}\right\}=B_{0} \cup \Delta_{m+1}$ must have a model, and contains φ_{m}. By (i), for any finite subset B_{1} of $\Gamma, B_{0} \cup B_{1} \cup \Delta_{m+1} \cup \Delta_{n+1}$ has a model and contains φ_{m}. Hence, $B_{0} \cup B_{1} \cup \Delta_{m+1} \cup \Delta_{n+1}$ does not contain φ_{n}. Since n is the only stage at which φ_{n} could have been added, $\varphi_{n}=\varphi$ does not belong to Δ.
(\Leftarrow) (iii).
(v) For all sentences φ, ψ in $\mathcal{L}^{\prime},(\varphi) \wedge(\psi)$ belongs to Δ if and only if φ and ψ both belong to Δ.
(\Rightarrow) We have that $(\varphi) \wedge(\psi)$ belong to Δ. Determine l such that $\varphi_{l}=(\varphi) \wedge(\psi)$, and determine m, n such that $\varphi_{m}=\varphi$ and $\varphi_{n}=\psi$. Since $\varphi_{l}=(\varphi) \wedge(\psi)$ belongs to Δ, for any finite subset B_{0} of $\Gamma, B_{0} \cup \Delta_{l} \cup\left\{\varphi_{l}\right\}$ has a model (by construction of Δ) and is equal to $B_{0} \cup \Delta_{l+1}$. Now, by (i), for any subset B_{1} of $\Gamma, B_{0} \cup B_{1} \cup \Delta_{l+1} \cup \Delta_{m+1}$ has a model. Since $B_{0} \cup B_{1} \cup \Delta_{l+1} \cup \Delta_{m+1}$ has a model and contains φ_{l}, we know that $\neg \varphi_{m} \notin B_{0} \cup B_{1} \cup \Delta_{l+1} \cup \Delta_{m}$ and hence $\neg \varphi_{m}$ is not in Δ (as it is only at stage m that it is added). Hence, by (iv), we have φ_{m} belongs to Δ. Similar method applies to n.
(\Leftarrow) We have that φ and ψ are in Δ, hence, by construction of Δ, for finite subsets B_{0} and B_{1} of $\Gamma, B_{0} \cup \Delta_{m} \cup\{\varphi\}$ and $B_{1} \cup \Delta_{n} \cup\{\psi\}$ have models and hence $B_{0} \cup \Delta_{m+1}$ and $B_{1} \cup \Delta_{n+1}$ have models, and each respectively contain φ and ψ. Determine l such that $\varphi_{l}=(\varphi) \wedge(\psi)$. By (i), we have that for any finite subset B_{2} of $\Gamma, \Gamma^{*}:=B_{0} \cup B_{1} \cup B_{2} \cup \Delta_{m+1} \cup \Delta_{n+1} \cup \Delta_{l+1}$ has a model (say $\mathfrak{A})$. Since $\varphi \in \Gamma^{*}$ and $\psi \in \Gamma^{*}, \mathfrak{A} \vDash \varphi$ and $\mathfrak{A} \vDash \psi$, hence $\mathfrak{A} \vDash(\varphi) \wedge(\psi)$. Hence, by the construction of $\Delta,(\varphi) \wedge(\psi) \in \Delta_{l+1} \subset \Delta$.
(vi) For any closed term t in $\operatorname{Term}\left(\mathcal{L}^{\prime}\right), t=t$ belongs to Δ. Let $\varphi_{m}=(t \neq t)$. At stage m, we verify for any finite subset B of Γ, if $B \cup \Delta_{m} \cup\left\{\varphi_{m}\right\}$ has a model. Since $(t \neq t)$ has no
model, therefore, $(t \neq t)$ does not belong to Δ. Hence, by (iii), $(t=t)$ belongs to Δ.
(vii) For any two closed terms t, t^{\prime} and a term $\phi(x)$ of $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$, if $t=t^{\prime}$ and $\phi(t)$ belongs to Δ, then $\phi\left(t^{\prime}\right)$ belongs to Δ : determine $\varphi_{m}=\left(t=t^{\prime}\right)$ and $\varphi_{n}=\phi(x)$. For stage m, by construction of Δ, for any finite subset B_{0} of $\Gamma, B_{0} \cup \Delta_{m} \cup\left\{\varphi_{m}\right\}=B_{0} \cup \Delta_{m+1}$ has a model. Similarly for stage n, we have that for any finite subset B_{1} of $\Gamma, B_{1} \cup \Delta_{n} \cup\left\{\varphi_{n}\right\}=B_{1} \cup \Delta_{n+1}$ has a model. By (i), $B_{0} \cup B_{1} \cup \Delta_{m+1} \cup \Delta_{n+1}$ has a model. Now, determine l such that $\varphi_{m}=\neg \phi\left(t^{\prime}\right)$. Now, consider, for any finite subset B_{2} of Γ, we know via (i) that $\Gamma^{*}:=B_{0} \cup B_{1} \cup B_{2} \cup \Delta_{m+1} \cup \Delta_{n+1} \cup \Delta_{l+1}$ has a model, and it contains $\left(t=t^{\prime}\right)$ and $\phi(t)$. We observe that $\Gamma^{*} \cup\left\{\neg \phi\left(t^{\prime}\right)\right\}$ has no model, therefore, since l is the only stage that it $\varphi_{l}=\neg \phi\left(t^{\prime}\right)$ could have been added, $\neg \phi(t)$ does not belong to Δ. By (iii), $\phi\left(t^{\prime}\right)$ belongs to Δ.
(viii) For all sentences φ of the form $\exists x[\psi(x)]$: the sentence $\exists x[\psi(x)]$ belongs to Δ if and only if there exists individual constant a_{i} such that the sentence $S_{\mathrm{a}_{i}}^{x}$ belongs to Δ. This directly follows from the construction of Δ (from its third case).
(ix) For any formula $\varphi(x)$ and for any constant c in \mathcal{L}, if $\phi(c)$ belongs to Δ, then the sentence $\exists x \phi(x)$ belongs to Δ : determine m such that $\varphi_{m}=\neg \exists x \phi(x)$, and determine $\varphi_{n}=\phi(c)$. Since $\varphi_{n}=\phi(c)$ belongs to Δ, by construction of Δ, for any finite subset B_{0} of Γ, we know $B_{0} \cup \Delta_{n} \cup\{\phi(c)\}=B_{0} \cup \Delta_{n+1}$ has a model. At stage m, we observe, by (i), that for any finite subset B_{1} of Γ, we have $\Gamma^{*}:=B_{0} \cup B_{1} \cup \Delta_{n+1} \cup \Delta_{m+1}$ has a model, say \mathfrak{A}. We also observe that since $\phi(c)$ belongs to Γ^{*}, we have that $\Gamma^{*} \cup\{\neg \exists x[\phi(x)]\}$ has no model, therefore, $\neg \exists x[\phi(x)]$ does not belong to Δ as it could only be added at stage m. Therefore, by (iii), $\exists x[\phi(x)]$ belongs to Δ.

We construct $\mathcal{M}=\left(A, R_{0}^{\mathcal{M}}, \ldots, R_{m-1}^{\mathcal{M}}, f_{0}^{\mathcal{M}}, \ldots, f_{n-1}^{\mathcal{M}}, c_{0}, \ldots, c_{p-1}^{\mathcal{M}}, a_{0}^{\mathcal{M}}, a_{1}^{\mathcal{M}}, \ldots\right)$ realising Δ.
We first build the domain of the structure \mathcal{M}. Consider the set $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$ of all closed (individual) terms of the extended language \mathcal{L}^{\prime} (an individual term is called closed if it does not contain any individual variable). We define a binary relation, \sim_{Δ} on this set as follows :

$$
\text { for all closed terms } s, t: s \sim_{\Delta} t:=\text { the sentence } s=t \text { belongs to } \Delta
$$

We now demonstrate that \sim_{Δ} is an equivalence relation on $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$:
(i) Reflexive : directly follows from (vi).
(ii) Symmetry : Take $\phi(t)=(t=c)$. By (vi), we have that $\phi(c)=(c=c)$ belongs to Δ. If $(c=d)$ in Δ, by (vii), $\phi(d)=(d=c)$ belongs to Δ.
(iii) Transitive : We have $(a=b)$ and $(b=c)$ in Δ. Take $\phi(t)=(a=t)$. By (vi), we have that $\phi(a)=(a=a)$ belongs to Δ. We also have $\phi(b)=(a=b)$ belongs to Δ. Since we have $(b=c)$ in Δ, by (vii), we know that $\phi(c)=(a=c)$ belongs to Δ.

We define $A:=\left\{[s]: s \in \operatorname{Term}\left(\mathcal{L}^{\prime}\right)\right\}$. We also note an equivalence class always induces a partition on the underlying set (in this case, Δ).

We define the relations of the structure \mathcal{M}. For every $i<m$, for every sequence $\left(s_{0}, s_{1}, \ldots, s_{k_{i}-1}\right)$ of elements of $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$, we define :

$$
\left\langle\left[s_{0}\right],\left[s_{1}\right], \ldots,\left[s_{k_{i}-1}\right]\right\rangle \text { belongs to } R_{i}^{\mathcal{M}} \text { if and only if } \mathrm{R}_{i}\left(s_{0}, s_{1}, \ldots, s_{k_{i}-1}\right) \text { belongs to } \Delta
$$

This definition is unambiguous, as for all sequences $\left(s_{0}, s_{1}, \ldots, s_{k_{i}-1}\right)$ and $\left(t_{0}, t_{1}, \ldots, t_{k_{i}-1}\right)$ of elements of $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$, if for each $j<k_{i}$, the sentence $s_{j}=t_{j}$ belongs to Δ, then the sentence $\mathrm{R}_{i}\left(s_{0}, s_{1}, \ldots, s_{k_{i}-1}\right)$ belongs to Δ if and only if the sentence $\mathrm{R}_{i}\left(t_{0}, t_{1}, \ldots, t_{k_{i}-1}\right)$ in Δ.

Next, we define the functions of the structure \mathcal{M}. For every $j<n$, for every sequence $\left(s_{0}, s_{1}, \ldots, s_{l_{j}-1}\right)$ of elements of $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$, we define :

$$
f_{j}^{\mathcal{M}}\left(\left[s_{0}\right],\left[s_{1}\right], \ldots,\left[s_{k_{i}-1}\right]\right):=\left[\mathrm{F}_{j}\left(s_{0}, s_{1}, \ldots, s_{k_{i}-1}\right)\right]
$$

This definition is unambiguous, as for all sequences $\left(s_{0}, s_{1}, \ldots, s_{k_{i}-1}\right)$ and $\left(t_{0}, t_{1}, \ldots, t_{k_{i}-1}\right)$ of elements of $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$, if for every $i<l_{j}$, the sentence $s_{i}=t_{i}$ belongs to Δ, then the sentence $\mathrm{F}_{i}\left(s_{0}, s_{1}, \ldots, s_{l_{j}-1}\right)=\mathrm{F}_{j}\left(t_{0}, t_{1}, \ldots, t_{l_{j}-1}\right)$ belongs to Δ. Hence, this definition is equivalent to $f_{j}^{\mathcal{M}}\left(\left[s_{0}\right],\left[s_{1}\right], \ldots,\left[s_{k_{i}-1}\right]\right)=[t]$ if and only if $\mathrm{F}_{j}\left(s_{0}, s_{1}, \ldots, s_{k_{i}-1}\right)=t$ belongs to Δ.

Finally, we interpret the individual constants of \mathcal{L}^{\prime}. For each $i<p$, we define $c_{i}^{\mathcal{M}}:=\left[c_{i}\right]$. For each i, we define $a_{i}^{\mathcal{M}}:=\left[\mathrm{a}_{i}\right]$. This completes the definition of the structure \mathcal{M}.

Now, we wish to prove that that for every term $t=t\left(x_{0}, \ldots, x_{n}\right)$ for every sequence $s_{0}, s_{1}, \ldots, s_{n}$ of elements of $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$:

$$
\mathcal{M} \vDash \varphi\left[\left[s_{0}\right],\left[s_{1}\right], \ldots,\left[s_{n}\right]\right] \text { if and only if } \varphi\left(s_{0}, s_{1}, \ldots, s_{n}\right) \text { belongs to } \Delta
$$

We begin with proving this claim for basic formulas via induction. We will also use the properties (i) to (viii). We will use $t^{\mathcal{M}}$ to denote the equivalence class containing a closed term t.

Lemma 1 For any term $t=t\left(x_{0}, \ldots, x_{n}\right)$, for any sequence a_{0}, \ldots, a_{n} of the elements $\operatorname{Term}\left(\mathcal{L}^{\prime}\right)$:

$$
\begin{equation*}
t^{\mathcal{M}}\left[\left[a_{0}\right], \ldots,\left[a_{n}\right]\right]=\left[t\left(a_{0}, \ldots, a_{n}\right)\right] \tag{1}
\end{equation*}
$$

Note that this statement is equivalent to $t^{\mathcal{M}}\left(\left[a_{0}\right], \ldots,\left[a_{n}\right]\right)=[b]$ if and only if $t\left(a_{0}, \ldots, a_{n}\right)=b$ belongs to Δ.

Proof. We prove this claim by induction on the construction of t. For simplicity, we will write the proof as if t contains at most one free variable. The general case only involves more complicated notation. Also, we have to remind ourselves the definition of a term, which is either an individual variable, an individual constant, or the finite application of functions to finitely many individual variables and constants.
(i) If t is a constant symbol c, then $t^{\mathcal{M}}=c^{\mathcal{M}}=[c]$. By the definition of the equivalence relation $\sim,[c]=[d]$ if and only if $c=d$ belongs to Δ.
(ii) t cannot possibly be a variable, as it a closed term in \mathcal{L}^{\prime}.
(iii) We suppose the result has been proven for terms t_{0}, \ldots, t_{n-1}, and we let f be a function symbol. For each i, the sentence $\exists y\left[t_{i}(c)=y\right]$ is a tautology, and therefore is contained in Δ. By construction of Δ, there exists a constant e_{i} (one of added constants a_{k} for some arbitrary k) such that $t_{i}(c)=\mathrm{e}_{i}$. By induction hypothesis, we have $t^{\mathcal{M}}([c])=\left[\mathrm{e}_{\mathrm{i}}\right]$.

Thus, we have the following :

$$
\begin{aligned}
\mathrm{F}_{j}\left(t_{1}, \ldots, t_{n}\right)^{\mathcal{M}}([c])=[d] & \text { iff } & f_{j}^{\mathcal{M}}\left(t_{1}^{\mathcal{M}}[c], \ldots, t_{n}^{\mathcal{M}}[c]\right)=[d] & \text { (Definition of } L \text {-structures.) } \\
& \text { iff } & f_{j}^{\mathcal{M}}\left(\left[\mathrm{e}_{1}\right], \ldots,\left[\mathrm{e}_{\mathrm{n}}\right]\right)=[d] & \text { (Induction Hypothesis) } \\
& \text { iff } & \mathrm{F}_{j}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right)=d \in \Delta & \text { (Definition of } \mathcal{M}) \\
& \text { iff } & \mathrm{F}_{j}\left(t_{0}(c), \ldots, t_{i}(c)\right)=d \in \Delta & \text { (By property (vii)) } \\
& \text { iff } & {\left[\mathrm{F}_{j}\left(t_{0}(c), \ldots, t_{i}(c)\right)\right]=[d] } & \text { (Definition of } \left.\left[d_{i}\right]\right)
\end{aligned}
$$

Now that we have proven (1), we now prove it for the relations of \mathcal{M}.
Lemma 2 For any formula ϕ with free variables in \vec{x} and constant symbols c_{1}, \ldots, c_{n},

$$
\begin{equation*}
\mathcal{M} \vDash_{\vec{x}} \phi\left(\left[c_{0}\right], \ldots,\left[c_{n}\right]\right) \quad \text { iff } \quad \phi\left(c_{1}, \ldots, c_{n}\right) \in \Delta \tag{2}
\end{equation*}
$$

We prove this claim by induction on the construction of ϕ. In some steps, we will write the formula ϕ as if it only has one free variable x; but the proof generalizes directly to the case of any number of free variables.
(i) In the case $\phi(x)$ has the form $t_{1}(x)=t_{2}(x)$: Since the sentence, $\exists y\left[t_{i}(\mathrm{c})=y\right]$ is a tautology, we know it belongs to Δ. Hence, by construction of Δ, there must be a constant d such that $t_{i}(\mathrm{c})=\mathrm{d}_{i} \in \Delta$. By (1), we have that $t_{i}^{\mathcal{M}}([\mathrm{c}])=\left[\mathrm{d}_{\mathrm{i}}\right]$ for $i=1,2$. Thus,

$$
\begin{array}{rlr}
M \vDash \phi(c) & \text { iff } & t_{1}^{\mathcal{M}}([c])=t_{2}^{\mathcal{M}}([c])
\end{array} \quad \text { (Definition of } L \text {-structures) }
$$

(ii) Suppose that $\phi(x)$ of the form $\mathrm{R}_{i}\left(t_{1}(x), \ldots, t_{n}(x)\right)$. Using the method used earlier, we can find constant symbols $\mathrm{d}_{1}, \ldots, \mathrm{~d}_{n}$ such that $t_{i}(x)=\mathrm{d}_{i}$ for $i=1, \ldots, n$. By (1), we have that $t_{i}^{\mathcal{M}}([\mathrm{c}])=\left[\mathrm{d}_{i}\right]$. Thus,

$$
\begin{array}{rlrl}
\mathcal{M} \vDash \phi(x) & \text { iff } & \left\langle t_{1}^{\mathcal{M}}([\mathrm{c}]), \ldots, t_{i}^{\mathcal{M}}([\mathrm{c}]\rangle \in R_{i}^{\mathcal{M}}\right. & \text { (Definition of } L \text {-structures) } \\
& \text { iff } & \left\langle\left[\mathrm{d}_{1}\right], \ldots,\left[\mathrm{d}_{i}\right]\right\rangle \in R_{i}^{\mathcal{M}} & \left(t_{i}^{\mathcal{M}}([\mathrm{c}])=\left[\mathrm{d}_{i}\right]\right) \\
\text { iff } & \mathrm{R}_{i}\left(\mathrm{~d}_{1}, \ldots, \mathrm{~d}_{i}\right) \in \Delta & \text { (Definition of } \left.R_{i}^{\mathcal{M}}\right) \\
& \text { iff } & \mathrm{R}_{i}\left(t_{1}(\mathrm{c}), \ldots, t_{i}(\mathrm{c})\right) \in \Delta & \text { (Definition of } \left.R_{i}^{\mathcal{M}}\right)
\end{array}
$$

(iii) Suppose $\phi(x)$ is of the form $\varphi(x) \wedge \psi(x)$. By induction hypothesis, we suppose that the claim (2) has been proven for (φ) and (ψ). We show that the claim holds for $\varphi(x) \wedge \psi(x)$:

$$
\begin{array}{lllr}
\mathcal{M} \vDash \varphi(x) \wedge \psi(x) & \text { iff } & \mathcal{M} \vDash \varphi(x) \text { and } \mathcal{M} \vDash \psi(x) & \text { (defn of } L \text {-structures) } \\
& \text { iff } \quad \varphi(x) \in \Delta \text { and } \psi(x) \in \Delta & \text { (Inductive Hypothesis) } \\
& \text { iff } \quad \varphi(x) \wedge \psi(x) \in \Delta & \text { (By property (v)) }
\end{array}
$$

(iv) Suppose the claim holds for $\phi(x)$. We prove it holds for $\neg \phi(x)$:

$\mathcal{M} \vDash \neg \phi(x)$	iff	$\mathcal{M} \not \models \phi(x)$	(defn of L-structures)
	iff	$\phi(x) \notin \Delta$	(Induction Hypothesis)
	iff	$\neg \phi(x) \in \Delta$	(Property (iv))

(v) For the case of the existential quantifier, we consider a formula $\phi(x)$ with one free variable. Supposing the claim has been proven true for $\phi(x)$, we show that it also holds for $\exists x \phi(x)$:
$\mathcal{M} \vDash \exists x \phi(x) \quad$ iff $\quad \mathcal{M} \vDash \phi([s])$ for $[s] \in A ; s$ is closed term in $\mathcal{L}^{\prime} \quad$ (defn of L-structures)
iff $\phi(s) \in \Delta \quad$ (Induction Hypothesis)
iff $s=\mathrm{a}_{k}^{\mathcal{M}}$ for some $k \in \mathbb{N}$ and $\exists x \phi(x) \in \Delta \quad$ (Construction of Δ)
Now we have proven (2), and by property (ii), we have that Γ has as model \mathcal{M}.

References

[1] Hans Halvorson. Compactness Theorem. https : / / www . princeton . edu / ~hhalvors / teaching/phi312_s2013/compactness.pdf.
[2] David Marker. Model theory: An Introduction. Vol. 217. Springer Science \& Business Media, 2006.

