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Abstract

Marker [2] elaborated a proof of Henkin’s Construction for the Compactness Theorem.
Halvorson [1] also provided a very friendly proof of the Henkin Construction of the Compact-
ness Theorem. This proof presented in this write-up is primarily based on Wim Veldman’s
proof, with the gaps filled with the former two proofs. Note, this is a constructive proof of
the Compactness Theorem, and therefore using Zorn’s Lemma is not allowed. I would want
to thank Kaspar Hagens from Radboud University, Nijmegen, for his helpful insights.

1 Henkin’s Construction

Theorem 1.1. Let Γ be a theory in L. If every finite subset of Γ has a model, then Γ itself has
a finite or countable model.

Proof. The language L contains relation symbols R0, . . . ,Rm−1,=, and function symbols F0, . . . ,Fn−1,
and individual constants c0, . . . , cp−1. Let L′ be the language obtained by adding to L a count-
able sequence a0, a1, a2, . . . of new individual constants (please note that the constants are being
added to the language, not the structure!). Now let ϕ0, ϕ1, ϕ2, . . . be an enumeration of all (not
only the true) sentences from the extended language L′. We now define an increasing sequence
∆0,∆1, . . . of finite sets of sentences from L′ via induction : ∆0 := ∅ and for each n ∈ N,

∆n+1 := ∆n
if there exists a finite subset B of Γ such that B ∪∆n ∪ {ϕn}
has no model.

∆n+1 := ∆n ∪ {ϕn} if for every finite subset B of Γ the set B ∪∆n ∪ {ϕn} has a
model
and the formula ϕn is not an existential formula, that is, it
does not have the form ∃x[ψ]

∆n+1 := ∆n ∪ {ϕn, S
x
amψ} if ϕn has the form ∃x[ψ] and for every finite subset B of Γ the

set B ∪∆n ∪ {ϕn} has a model and m is the least number k
such that the individual constant ak does not occur in ϕn and
not in any formula from ∆n.

Finally, we define ∆ :=
⋃

n∈N
∆n. We now observe that that ∆ has the following properties :

(i) For every n, for every finite subset B of Γ, the set B ∪∆n has a model. We prove this by
induction : for n = 0, we know B ∪∆0 = B has a model (as every finite subset of Γ has a
model). Now, by induction hypothesis, assume B ∪∆n−1 has a model. If we have the first
case of the definition of ∆, then ∆n−1 = ∆n hence B ∪ ∆n has a model. If, instead, the
second case applies, then B ∪ ∆n−1 ∪ {ϕn−1} has a model. Since ∆n = ∆n−1 ∪ {ϕn−1},
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B ∪ ∆n has a model. For the third case, we have that B ∪ ∆n−1 ∪ {ϕn−1} has a model
(say A) and m is the least number k such that the individual constant ak does not occur
in ϕn−1 and not in any formula from ∆n−1. ϕn−1 is of the form ∃x[ψ], therefore, by the
definition of L−structure, there exists a b in B ∪∆n−1 ∪ {ϕn−1} such that A � φ(b). Now
we shall expand the structure A with the constant ak (which was added to L), having as
interpretation b. Therefore, B ∪∆n−1 ∪ {ϕn−1, S

x
akψ} has as model (A, ..., b). Substituting

∆n = ∆n−1 ∪ {ϕn−1, S
x
akψ} gives us that B ∪∆n has a model.

(ii) Γ ⊆ ∆. Let ϕ ∈ Γ. Determine m such that ϕ = ϕm. Since ϕm ∈ Γ, therefore, for any finite
subset B of Γ, B ∪ {ϕm} is a finite subset of Γ, therefore, by (i), B ∪ ∆m ∪ {ϕm} has a
model. By the construction of ∆, ϕm = ϕ ∈ ∆.

(iii) For every n, either the sentence ϕn belongs to ∆ or the sentence ¬ϕn belongs to n. Suppose
ϕn does not belong to ∆, therefore, we can determine a finite subset B0 of ∆ such that
B0∪∆n∪{ϕn} has no model. We then determine m such that ϕm = ¬ϕn. We claim that for
every finite subset B′ of Γ, the set B′∪∆m∪{ϕm} has a model. Indeed, B0∪B′∪∆m∪∆n

has a model (say A) via (i), because either ∆n ⊆ ∆m or ∆m ⊆ ∆n and B0 ∪ B′ is a finite
subset of Γ. Now, since B0 ∪∆n ∪ {ϕn} has no model, therefore A 2 ϕn. By the definition
of a model, A � ¬ϕn. Therefore, B′ ∪∆m ∪ {ϕm} has as model A. By the construction of
∆, ϕm ∈ ∆m+1 ⊂ ∆.

(iv) For all sentences ψ in L′, ¬(ψ) belongs to ∆ if and only if ψ does not belong to ∆.

(⇒) Say ¬ϕ ∈ ∆, let ϕm = ¬ϕ and let ϕn = ϕ. Since ϕm belongs to ∆, by the construction
of ∆, for any subset B0 of Γ, B0∪∆m∪{ϕm} = B0∪∆m+1 must have a model, and contains
ϕm. By (i), for any finite subset B1 of Γ, B0∪B1∪∆m+1∪∆n+1 has a model and contains
ϕm. Hence, B0 ∪ B1 ∪ ∆m+1 ∪ ∆n+1 does not contain ϕn. Since n is the only stage at
which ϕn could have been added, ϕn = ϕ does not belong to ∆.

(⇐) (iii).

(v) For all sentences ϕ, ψ in L′, (ϕ) ∧ (ψ) belongs to ∆ if and only if ϕ and ψ both belong to
∆.

(⇒) We have that (ϕ) ∧ (ψ) belong to ∆. Determine l such that ϕl = (ϕ) ∧ (ψ), and
determine m,n such that ϕm = ϕ and ϕn = ψ. Since ϕl = (ϕ) ∧ (ψ) belongs to ∆, for any
finite subset B0 of Γ, B0 ∪ ∆l ∪ {ϕl} has a model (by construction of ∆) and is equal to
B0 ∪∆l+1. Now, by (i), for any subset B1 of Γ, B0 ∪B1 ∪∆l+1 ∪∆m+1 has a model. Since
B0∪B1∪∆l+1∪∆m+1 has a model and contains ϕl, we know that ¬ϕm 6∈ B0∪B1∪∆l+1∪∆m

and hence ¬ϕm is not in ∆ (as it is only at stage m that it is added). Hence, by (iv), we
have ϕm belongs to ∆. Similar method applies to n.

(⇐) We have that ϕ and ψ are in ∆, hence, by construction of ∆, for finite subsets B0 and
B1 of Γ, B0∪∆m∪{ϕ} and B1∪∆n∪{ψ} have models and hence B0∪∆m+1 and B1∪∆n+1

have models, and each respectively contain ϕ and ψ. Determine l such that ϕl = (ϕ)∧ (ψ).
By (i), we have that for any finite subset B2 of Γ, Γ∗ := B0∪B1∪B2∪∆m+1∪∆n+1∪∆l+1

has a model (say A). Since ϕ ∈ Γ∗ and ψ ∈ Γ∗, A � ϕ and A � ψ, hence A � (ϕ) ∧ (ψ).
Hence, by the construction of ∆, (ϕ) ∧ (ψ) ∈ ∆l+1 ⊂ ∆.

(vi) For any closed term t in Term(L′), t = t belongs to ∆. Let ϕm = (t 6= t). At stage m, we
verify for any finite subset B of Γ, if B ∪ ∆m ∪ {ϕm} has a model. Since (t 6= t) has no
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model, therefore, (t 6= t) does not belong to ∆. Hence, by (iii), (t = t) belongs to ∆.

(vii) For any two closed terms t, t′ and a term φ(x) of Term(L′), if t = t′ and φ(t) belongs to
∆, then φ(t′) belongs to ∆ : determine ϕm = (t = t′) and ϕn = φ(x). For stage m, by
construction of ∆, for any finite subset B0 of Γ, B0∪∆m∪{ϕm} = B0∪∆m+1 has a model.
Similarly for stage n, we have that for any finite subset B1 of Γ, B1∪∆n∪{ϕn} = B1∪∆n+1

has a model. By (i), B0 ∪ B1 ∪ ∆m+1 ∪ ∆n+1 has a model. Now, determine l such
that ϕm = ¬φ(t′). Now, consider, for any finite subset B2 of Γ, we know via (i) that
Γ∗ := B0 ∪B1 ∪B2 ∪∆m+1 ∪∆n+1 ∪∆l+1 has a model, and it contains (t = t′) and φ(t).
We observe that Γ∗ ∪ {¬φ(t′)} has no model, therefore, since l is the only stage that it
ϕl = ¬φ(t′) could have been added, ¬φ(t) does not belong to ∆. By (iii), φ(t′) belongs to
∆.

(viii) For all sentences ϕ of the form ∃x[ψ(x)] : the sentence ∃x[ψ(x)] belongs to ∆ if and only
if there exists individual constant ai such that the sentence Sx

ai belongs to ∆. This directly
follows from the construction of ∆ (from its third case).

(ix) For any formula ϕ(x) and for any constant c in L, if φ(c) belongs to ∆, then the sentence
∃xφ(x) belongs to ∆ : determine m such that ϕm = ¬∃xφ(x), and determine ϕn = φ(c).
Since ϕn = φ(c) belongs to ∆, by construction of ∆, for any finite subset B0 of Γ, we know
B0 ∪∆n ∪ {φ(c)} = B0 ∪∆n+1 has a model. At stage m, we observe, by (i), that for any
finite subset B1 of Γ, we have Γ∗ := B0 ∪ B1 ∪ ∆n+1 ∪ ∆m+1 has a model, say A. We
also observe that since φ(c) belongs to Γ∗, we have that Γ∗ ∪ {¬∃x[φ(x)]} has no model,
therefore, ¬∃x[φ(x)] does not belong to ∆ as it could only be added at stage m. Therefore,
by (iii), ∃x[φ(x)] belongs to ∆.

We construct M = (A,RM0 , . . . , RMm−1, f
M
0 , . . . , fMn−1, c0, . . . , c

M
p−1, a

M
0 , aM1 , . . . ) realising ∆.

We first build the domain of the structure M. Consider the set Term(L′) of all closed (in-
dividual) terms of the extended language L′ (an individual term is called closed if it does not
contain any individual variable). We define a binary relation, ∼∆ on this set as follows :

for all closed terms s, t : s ∼∆ t := the sentence s = t belongs to ∆

We now demonstrate that ∼∆ is an equivalence relation on Term(L′) :

(i) Reflexive : directly follows from (vi).

(ii) Symmetry : Take φ(t) = (t = c). By (vi), we have that φ(c) = (c = c) belongs to ∆. If
(c = d) in ∆, by (vii), φ(d) = (d = c) belongs to ∆.

(iii) Transitive : We have (a = b) and (b = c) in ∆. Take φ(t) = (a = t). By (vi), we have that
φ(a) = (a = a) belongs to ∆. We also have φ(b) = (a = b) belongs to ∆. Since we have
(b = c) in ∆, by (vii), we know that φ(c) = (a = c) belongs to ∆.

We define A := {[s] : s ∈ Term(L′)}. We also note an equivalence class always induces a parti-
tion on the underlying set (in this case, ∆).

We define the relations of the structureM. For every i < m, for every sequence (s0, s1, . . . , ski−1)
of elements of Term(L′), we define :

〈[s0], [s1], . . . , [ski−1]〉 belongs to RMi if and only if Ri(s0, s1, . . . , ski−1) belongs to ∆
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This definition is unambiguous, as for all sequences (s0, s1, . . . , ski−1) and (t0, t1, . . . , tki−1) of
elements of Term(L′), if for each j < ki, the sentence sj = tj belongs to ∆, then the sentence
Ri(s0, s1, . . . , ski−1) belongs to ∆ if and only if the sentence Ri(t0, t1, . . . , tki−1) in ∆.

Next, we define the functions of the structureM. For every j < n, for every sequence (s0, s1, . . . , slj−1)
of elements of Term(L′), we define :

fMj ([s0], [s1], . . . , [ski−1]) := [Fj(s0, s1, . . . , ski−1)]

This definition is unambiguous, as for all sequences (s0, s1, . . . , ski−1) and (t0, t1, . . . , tki−1) of
elements of Term(L′), if for every i < lj , the sentence si = ti belongs to ∆, then the sentence
Fi(s0, s1, . . . , slj−1) = Fj(t0, t1, . . . , tlj−1) belongs to ∆. Hence, this definition is equivalent to
fMj ([s0], [s1], . . . , [ski−1]) = [t] if and only if Fj(s0, s1, . . . , ski−1) = t belongs to ∆.

Finally, we interpret the individual constants of L′. For each i < p, we define cMi := [ci].
For each i, we define aMi := [ai]. This completes the definition of the structure M.

Now, we wish to prove that that for every term t = t(x0, . . . , xn) for every sequence s0, s1, . . . , sn
of elements of Term(L′) :

M � ϕ
[
[s0], [s1], . . . , [sn]

]
if and only if ϕ(s0, s1, . . . , sn) belongs to ∆

We begin with proving this claim for basic formulas via induction. We will also use the properties
(i) to (viii). We will use tM to denote the equivalence class containing a closed term t.

Lemma 1 For any term t = t(x0, . . . , xn), for any sequence a0, . . . , an of the elements Term(L′)
:

tM
[
[a0], . . . , [an]

]
= [t(a0, . . . , an)] (1)

Note that this statement is equivalent to tM([a0], . . . , [an]) = [b] if and only if t(a0, . . . , an) = b
belongs to ∆.

Proof. We prove this claim by induction on the construction of t. For simplicity, we will write the
proof as if t contains at most one free variable. The general case only involves more complicated
notation. Also, we have to remind ourselves the definition of a term, which is either an individual
variable, an individual constant, or the finite application of functions to finitely many individual
variables and constants.

(i) If t is a constant symbol c, then tM = cM = [c]. By the definition of the equivalence
relation ∼, [c] = [d] if and only if c = d belongs to ∆.

(ii) t cannot possibly be a variable, as it a closed term in L′.

(iii) We suppose the result has been proven for terms t0, . . . , tn−1, and we let f be a function
symbol. For each i, the sentence ∃y[ti(c) = y] is a tautology, and therefore is contained
in ∆. By construction of ∆, there exists a constant ei (one of added constants ak for
some arbitrary k) such that ti(c) = ei. By induction hypothesis, we have tM([c]) = [ei].
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Thus, we have the following :

Fj(t1, . . . , tn)M([c]) = [d] iff fMj (tM1 [c], . . . , tMn [c]) = [d] (Definition of L−structures.)

iff fMj ([e1], . . . , [en]) = [d] (Induction Hypothesis)

iff Fj(e1, . . . , en) = d ∈ ∆ (Definition of M)

iff Fj(t0(c), . . . , ti(c)) = d ∈ ∆ (By property (vii) )

iff
[
Fj(t0(c), . . . , ti(c))

]
= [d] (Definition of [di] )

Now that we have proven (1), we now prove it for the relations of M.

Lemma 2 For any formula φ with free variables in ~x and constant symbols c1, . . . , cn,

M �~x φ([c0], . . . , [cn]) iff φ(c1, . . . , cn) ∈ ∆ (2)

We prove this claim by induction on the construction of φ. In some steps, we will write the
formula φ as if it only has one free variable x; but the proof generalizes directly to the case of
any number of free variables.

(i) In the case φ(x) has the form t1(x) = t2(x) : Since the sentence, ∃y[ti(c) = y] is a tautology,
we know it belongs to ∆. Hence, by construction of ∆, there must be a constant d such
that ti(c) = di ∈ ∆. By (1), we have that tMi ([c]) = [di] for i = 1, 2. Thus,

M � φ(c) iff tM1 ([c]) = tM2 ([c]) ( Definition of L−structures )

iff [d1] = [d2] (tMi ([c]) = [di])

iff d1 ∼∆ d2 ( Definition of [di] )

iff d1 = d2 ∈ ∆ ( Definition of ∼∆ )

iff t1(d1) = t1(d2) ∈ ∆ (ti(ci) = di)

(ii) Suppose that φ(x) of the form Ri(t1(x), . . . , tn(x)). Using the method used earlier, we can
find constant symbols d1, . . . , dn such that ti(x) = di for i = 1, . . . , n. By (1), we have that
tMi ([c]) = [di]. Thus,

M � φ(x) iff 〈tM1 ([c]), . . . , tMi ([c]〉 ∈ RMi ( Definition of L−structures )

iff 〈[d1], . . . , [di]〉 ∈ RMi ( tMi ([c]) = [di] )

iff Ri(d1, . . . , di) ∈ ∆ ( Definition of RMi )

iff Ri(t1(c), . . . , ti(c)) ∈ ∆ ( Definition of RMi )

(iii) Suppose φ(x) is of the form ϕ(x) ∧ ψ(x). By induction hypothesis, we suppose that the
claim (2) has been proven for (ϕ) and (ψ). We show that the claim holds for ϕ(x)∧ψ(x) :

M � ϕ(x) ∧ ψ(x) iff M � ϕ(x) and M � ψ(x) ( defn of L−structures )

iff ϕ(x) ∈ ∆ and ψ(x) ∈ ∆ ( Inductive Hypothesis )

iff ϕ(x) ∧ ψ(x) ∈ ∆ ( By property (v) )
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(iv) Suppose the claim holds for φ(x). We prove it holds for ¬φ(x) :

M � ¬φ(x) iff M 2 φ(x) ( defn of L−structures )

iff φ(x) 6∈ ∆ ( Induction Hypothesis )

iff ¬φ(x) ∈ ∆ ( Property (iv) )

(v) For the case of the existential quantifier, we consider a formula φ(x) with one free variable.
Supposing the claim has been proven true for φ(x), we show that it also holds for ∃xφ(x) :

M � ∃xφ(x) iff M � φ([s]) for [s] ∈ A; s is closed term in L′ ( defn of L−structures )

iff φ(s) ∈ ∆ ( Induction Hypothesis )

iff s = aMk for some k ∈ N and ∃xφ(x) ∈ ∆ ( Construction of ∆ )

Now we have proven (2), and by property (ii), we have that Γ has as model M.
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