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Abstract

Marker [2] elaborated a proof of Henkin’s Construction for the Compactness Theorem.
Halvorson [1] also provided a very friendly proof of the Henkin Construction of the Compact-
ness Theorem. This proof presented in this write-up is primarily based on Wim Veldman’s
proof, with the gaps filled with the former two proofs. Note, this is a constructive proof of
the Compactness Theorem, and therefore using Zorn’s Lemma is not allowed. I would want
to thank Kaspar Hagens from Radboud University, Nijmegen, for his helpful insights.

1 Henkin’s Construction

Theorem 1.1. Let I" be a theory in L. If every finite subset of I' has a model, then T itself has
a finite or countable model.

Proof. The language £ contains relation symbols Ry, ..., R,,,—1, =, and function symbols Fg, ..., F,_1,
and individual constants co, ..., cp—1. Let £’ be the language obtained by adding to £ a count-
able sequence ap, ai, ag, ... of new individual constants (please note that the constants are being
added to the language, not the structure!). Now let ¢g, 1, @2,... be an enumeration of all (not
only the true) sentences from the extended language £'. We now define an increasing sequence
Ag, A1, ... of finite sets of sentences from £’ via induction : Ay := ) and for each n € N,

Apir = A, if there exists a finite subset B of I" such that BUA,, U {¢,}
has no model.

Apt1 = A, U{pn} if for every finite subset B of T' the set BU A, U{¢,} has a
model
and the formula ¢, is not an existential formula, that is, it
does not have the form Jx[¢)]

Api1 = ApU{pn, Sy ¥} if o, has the form 3z[¢)] and for every finite subset B of I the
set BUA,, U{p,} has a model and m is the least number k
such that the individual constant a; does not occur in ¢,, and
not in any formula from A,,.

Finally, we define A := |J A,. We now observe that that A has the following properties :
neN

(i) For every n, for every finite subset B of I, the set B U A,, has a model. We prove this by
induction : for n = 0, we know B U Ay = B has a model (as every finite subset of T" has a
model). Now, by induction hypothesis, assume B U A,,_; has a model. If we have the first
case of the definition of A, then A, _; = A,, hence BU A,, has a model. If, instead, the
second case applies, then BU A,,_1 U {¢,,_1} has a model. Since A,, = A,_1 U{vn-1},



(i)

(i)

(iv)

B UA, has a model. For the third case, we have that BU A,,_1 U {¢,_1} has a model
(say 20) and m is the least number k such that the individual constant a; does not occur
in ¢,—1 and not in any formula from A,_;. ¢,_1 is of the form Jz[¢)], therefore, by the
definition of L—structure, there exists a b in BUA,,_1 U {@,_1} such that 2A F ¢(b). Now
we shall expand the structure 2 with the constant a, (which was added to £), having as
interpretation b. Therefore, BUA,,_1 U{¢,_1, S5 ¥} has as model (2, ...,b). Substituting
Ap = Ap_1U{pn_1,57 ¥} gives us that BU A, has a model.

I' C A. Let ¢ € I'. Determine m such that ¢ = ¢,,. Since ¢,,, € I, therefore, for any finite
subset B of ', BU {¢,,} is a finite subset of T', therefore, by (i), B U A, U {¢,,} has a
model. By the construction of A, ¢,, = ¢ € A.

For every n, either the sentence ¢,, belongs to A or the sentence —p,, belongs to n. Suppose
pn does not belong to A, therefore, we can determine a finite subset By of A such that
ByUA,U{®,} has no model. We then determine m such that ¢, = —¢,,. We claim that for
every finite subset B’ of T, the set B'UA,,, U{®m } has a model. Indeed, ByUB' UA,,UA,
has a model (say 2A) via (i), because either A, C A,, or A, C A,, and By U B’ is a finite
subset of I'. Now, since By U A, U{¢,} has no model, therefore 2L ¥ ¢,,. By the definition
of a model, A F —p,,. Therefore, B’ UA,, U{y,} has as model 2. By the construction of
A om € A1 C AL

For all sentences ¥ in L', =(1)) belongs to A if and only if ¥ does not belong to A.

(=) Say —¢ € A, let ,,, = —p and let p,, = ¢. Since @,, belongs to A, by the construction
of A, for any subset By of ', ByUA,,,U{¢m} = BoUA,, 1 must have a model, and contains
©m- By (i), for any finite subset By of T', BoU By UA,,,+1 UA,,+1 has a model and contains
@m. Hence, Bo U By UA,,+1 UA,41 does not contain ¢,. Since n is the only stage at
which ¢,, could have been added, ¢,, = ¢ does not belong to A.

(<) (iii).
For all sentences ¢, 1 in L, (p) A () belongs to A if and only if ¢ and ¢ both belong to
A.

(=) We have that (¢) A (1)) belong to A. Determine ! such that ¢; = (¢) A (¢), and
determine m, n such that ¢, = ¢ and ¢,, = 1¥. Since ¢; = (¢) A (1) belongs to A, for any
finite subset By of T, By U A; U {¢;} has a model (by construction of A) and is equal to
ByUA ;. Now, by (i), for any subset By of T', BoU B UA;41 UA,,11 has a model. Since
BoUB1UA;11UA,,,+1 has a model and contains ¢;, we know that —¢,, ¢ BoUB1UA;11UA,,
and hence —p,, is not in A (as it is only at stage m that it is added). Hence, by (iv), we
have ¢,, belongs to A. Similar method applies to n.

(<) We have that ¢ and ¢ are in A, hence, by construction of A, for finite subsets By and
By of T, ByUA,,,U{p} and B;UA, U{¢} have models and hence ByUA,,, ;1 and BiUA, 11
have models, and each respectively contain ¢ and . Determine [ such that ¢; = (¢) A (¢).
By (i), we have that for any finite subset By of I', I'* := BoUB1UBa UA,;, 11 UA 11 UA 41
has a model (say 2). Since ¢ € I'* and ¢ € I'*, A F ¢ and 2A F ¢, hence A E () A (¢).
Hence, by the construction of A, (p) A (¥) € A1 C AL

For any closed term ¢ in Term(L'), t =t belongs to A. Let ¢, = (¢t # t). At stage m, we
verify for any finite subset B of T, if BU A,,, U {¢,,} has a model. Since (¢ # t) has no



model, therefore, (¢ # t) does not belong to A. Hence, by (iii), (¢t = t) belongs to A.

(vii) For any two closed terms ¢,¢' and a term ¢(z) of Term(L'), if ¢ = ¢ and ¢(t) belongs to
A, then ¢(t') belongs to A : determine ¢, = (t = t') and ¢,, = ¢(z). For stage m, by
construction of A, for any finite subset By of I', BoUA,,, U{p,} = BoUA,,11 has a model.
Similarly for stage n, we have that for any finite subset By of T', B1UA,,U{¢,} = B1UA,+1
has a model. By (i), Bo U By U A,4+1 U A1 has a model. Now, determine ! such
that ¢, = —¢(t'). Now, consider, for any finite subset By of T, we know via (i) that
'™ :=ByUBy UBs UAp 11 UA, 1 UA; has a model, and it contains (¢t = t) and ¢(t).
We observe that I'* U {—¢(t')} has no model, therefore, since [ is the only stage that it
w1 = ¢(t') could have been added, —¢(t) does not belong to A. By (iii), ¢(¢') belongs to
A.

(viii) For all sentences ¢ of the form Jz[i)(x)] : the sentence Jz[i)(x)] belongs to A if and only
if there exists individual constant a; such that the sentence S7. belongs to A. This directly
follows from the construction of A (from its third case).

(ix) For any formula ¢(x) and for any constant ¢ in L, if ¢(c) belongs to A, then the sentence
Jz¢(x) belongs to A : determine m such that ¢, = =Jzd(x), and determine @, = ¢(c).
Since ¢, = ¢(c) belongs to A, by construction of A, for any finite subset By of I, we know
By UA, U{¢p(c)} = By U A, 41 has a model. At stage m, we observe, by (i), that for any
finite subset B; of I', we have I'* := By U By U A, 41 U A,,11 has a model, say 2. We
also observe that since ¢(c) belongs to I'*, we have that I'* U {—3z[¢(x)]} has no model,
therefore, =3z[¢(x)] does not belong to A as it could only be added at stage m. Therefore,
by (iii), Jz[¢p(x)] belongs to A.

We construct M = (A, R, ..., RM | fM .. M co, . .,cﬁfl,aé/‘,a{vl, ...) realising A.

We first build the domain of the structure M. Consider the set Term(L’) of all closed (in-
dividual) terms of the extended language £’ (an individual term is called closed if it does not
contain any individual variable). We define a binary relation, ~a on this set as follows :

for all closed terms s,t: s ~a t := the sentence s =t belongs to A
We now demonstrate that ~a is an equivalence relation on Term(L') :

(i) Reflezive : directly follows from (vi).

(ii) Symmetry : Take ¢(t) = (t = ¢). By (vi), we have that ¢(c) = (¢ = ¢) belongs to A. If
(c=d) in A, by (vii), ¢(d) = (d = ¢) belongs to A.

(iii) Transitive : We have (a = b) and (b = ¢) in A. Take ¢(t) = (e =t). By (vi), we have that
¢(a) = (a = a) belongs to A. We also have ¢(b) = (a = b) belongs to A. Since we have
(b=rc¢) in A, by (vii), we know that ¢(c) = (a = ¢) belongs to A.

We define A := {[s] : s € Term(L')}. We also note an equivalence class always induces a parti-
tion on the underlying set (in this case, A).

We define the relations of the structure M. For every i < m, for every sequence (Sg, S1, ..., Sg;—1)
of elements of Term(L’), we define :

([so], [s1], - - - [sk,-1]) belongs to RM if and only if R;(s, s1,...,sk,_1) belongs to A



This definition is unambiguous, as for all sequences (sg, $1,...,5k,—1) and (tg,t1,...,tg,—1) Of
elements of Term(L'), if for each j < k;, the sentence s; = t; belongs to A, then the sentence
Ri(s0,81,-..,8k,—1) belongs to A if and only if the sentence R;(to,t1,...,tg,—1) in A.

Next, we define the functions of the structure M. For every j < n, for every sequence (s, 51, ...,5,-1)
of elements of Term(L’), we define :

f]{w([s(ﬂa [51]3 cee [Sk,,—l]) = [Fj(SOa 15044 Skl—l)}

This definition is unambiguous, as for all sequences (sg, $1,...,8k,—1) and (to,t1,...,tg,—1) of
elements of Term(L'), if for every i < [;, the sentence s; = t; belongs to A, then the sentence
Fi(s0,81,...,51,-1) = Fj(to,t1,...,t;,—1) belongs to A. Hence, this definition is equivalent to
FM([so], [s1], - - - [sk,—1]) = [t] if and only if F;(sg, s1,...,sk,—1) = t belongs to A.

Finally, we interpret the individual constants of £’. For each i < p, we define cM := [c;].

i
For each i, we define a/*! := [a;]. This completes the definition of the structure M.

Now, we wish to prove that that for every term ¢ = t(zo, ..., x,) for every sequence sg, S1,..., S,
of elements of Term(L’) :

ME @][s0], [s1],-- -, [sn]] if and only if ¢(sg, s1,...,sn) belongs to A

We begin with proving this claim for basic formulas via induction. We will also use the properties
(i) to (viii). We will use t™ to denote the equivalence class containing a closed term t.

Lemma 1 For any term ¢ = ¢(xq, ..., Z,), for any sequence ag, . .., a, of the elements Term(L’)
tM[[ao],...7[anH = [t(ag,...,an)] (1)
Note that this statement is equivalent to t*([ag], ..., [a,]) = [b] if and only if ¢(ag,...,a,) = b

belongs to A.

Proof. We prove this claim by induction on the construction of ¢. For simplicity, we will write the
proof as if ¢ contains at most one free variable. The general case only involves more complicated
notation. Also, we have to remind ourselves the definition of a term, which is either an individual
variable, an individual constant, or the finite application of functions to finitely many individual
variables and constants.

(i) If ¢ is a constant symbol c, then t™ = ¢cM = [¢]. By the definition of the equivalence
relation ~, [¢] = [d] if and only if ¢ = d belongs to A.

(ii) t cannot possibly be a variable, as it a closed term in £'.

(ili) 'We suppose the result has been proven for terms ¢, . .., t,—1, and we let f be a function
symbol. For each %, the sentence Jylt;(c) = y] is a tautology, and therefore is contained
in A. By construction of A, there exists a constant e; (one of added constants ay for
some arbitrary k) such that ¢;(c) = e;. By induction hypothesis, we have t*([c]) = [e;].



Thus, we have the following :

Fi(te, ..., tn)M([c]) = [d] iff ij (tMe],...,tM[c]) = [d] (Definition of L—structures.
iff ]"J/\/‘([el}7 .y [en]) = [d] (Induction Hypothesis
iff Fj(er,...,en) =deA (Definition of M
iff  F;(to(c),...,ti(c)) =de A (By property (vii)
iff  [Fj(to(c),...,ti(c)] = [d] (Definition of [d;]
O
Now that we have proven (1), we now prove it for the relations of M.
Lemma 2 For any formula ¢ with free variables in & and constant symbols ¢y, ..., ¢,
M ':f ¢([60]a~"a[cn]) iff ¢(Clv"'7cn) €A (2)

We prove this claim by induction on the construction of ¢. In some steps, we will write the
formula ¢ as if it only has one free variable x; but the proof generalizes directly to the case of
any number of free variables.

(i) In the case ¢(x) has the form ¢1(z) = t2(z) : Since the sentence, y[t;(c) = y] is a tautology,
we know it belongs to A. Hence, by construction of A, there must be a constant d such
that t;(c) = d; € A. By (1), we have that t([c]) = [di] for i = 1,2. Thus,

ME¢(c) iff  tM([c]) = t5'([d]) ( Definition of L—structures )
iff  [dy] = [do] (t7([c]) = [di))
iff dy ~ady ( Definition of [d;] )
iff di=dec A ( Definition of ~x )
it t1(dy) = t1(d2) € A (ti(ci) = di)

(ii) Suppose that ¢(x) of the form R;(t1(z), ..., tn(x ) Using the method used earlier, we can
find constant symbols dy, ..., d,, such that ti(x) =d; fori=1,...,n. By (1), we have that
tM([c]) = [d;]. Thus,

ME @) it #M(]),...,tM(]) € RM ( Definition of L—structures )
iff  ([di],....[di]) € BV (t(Ic)) = [di] )
iff  Ri(dy,....d;)) e A ( Definition of RM )
iff  Ri(t1(c),...,ti(c)) € A ( Definition of R )

(iii) Suppose ¢(z) is of the form ¢(z) A ¥ (z). By induction hypothesis, we suppose that the
claim (2) has been proven for (¢) and (1)). We show that the claim holds for ¢(x) A¢(z) :

ME (@) NY(z) if ME p(x) and M E (z) ( defn of L—structures )
iff o(x) € Aand ¢P(z) € A ( Inductive Hypothesis )

iff  o(z)AY(z) €A ( By property (v) )



(iv) Suppose the claim holds for ¢(x). We prove it holds for —¢(z) :

ME =¢p(x) iff ME ¢(zx) ( defn of L—structures )
iff ¢(z) €A ( Induction Hypothesis )
iff —¢(x) € A ( Property (iv) )

(v) For the case of the existential quantifier, we consider a formula ¢(x) with one free variable.
Supposing the claim has been proven true for ¢(z), we show that it also holds for Jz¢(z) :

ME Jzp(x) if ME ¢([s]) for [s] € A; s is closed term in £ ( defn of L—structures )

iff ¢(s) e A ( Induction Hypothesis )
iff s =ap! for some k € N and Jz¢(x) € A ( Construction of A )
Now we have proven (2), and by property (ii), we have that T has as model M. O
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