Compactness Theorem

Danish A. Alvi

May 18, 2021

Abstract

Marker [2] elaborated a proof of Henkin's Construction for the Compactness Theorem. Halvorson [1] also provided a very *friendly* proof of the Henkin Construction of the Compactness Theorem. This proof presented in this write-up is primarily based on Wim Veldman's proof, with the gaps filled with the former two proofs. Note, this is a constructive proof of the Compactness Theorem, and therefore using Zorn's Lemma is not allowed. I would want to thank Kaspar Hagens from Radboud University, Nijmegen, for his helpful insights.

1 Henkin's Construction

Theorem 1.1. Let Γ be a theory in \mathcal{L} . If every finite subset of Γ has a model, then Γ itself has a finite or countable model.

Proof. The language \mathcal{L} contains relation symbols $\mathbb{R}_0, \ldots, \mathbb{R}_{m-1}, =$, and function symbols $\mathbb{F}_0, \ldots, \mathbb{F}_{n-1}$, and individual constants c_0, \ldots, c_{p-1} . Let \mathcal{L}' be the language obtained by adding to \mathcal{L} a countable sequence $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \ldots$ of *new* individual constants (please note that the constants are being added to the language, not the structure!). Now let $\varphi_0, \varphi_1, \varphi_2, \ldots$ be an enumeration of *all* (not only the true) sentences from the extended language \mathcal{L}' . We now define an increasing sequence $\Delta_0, \Delta_1, \ldots$ of finite sets of sentences from \mathcal{L}' via induction : $\Delta_0 := \emptyset$ and for each $n \in \mathbb{N}$,

Δ_{n+1}	:=	Δ_n	if there exists a finite subset B of Γ such that $B \cup \Delta_n \cup \{\varphi_n\}$ has no model.
Δ_{n+1}	:=	$\Delta_n \cup \{\varphi_n\}$	if for every finite subset B of Γ the set $B \cup \Delta_n \cup \{\varphi_n\}$ has a model
			and the formula φ_n is not an existential formula, that is, it does not have the form $\exists x[\psi]$
Δ_{n+1}	:=	$\Delta_n \cup \{\varphi_n, S^x_{\mathbf{a}_m}\psi\}$	if φ_n has the form $\exists x[\psi]$ and for every finite subset B of Γ the set $B \cup \Delta_n \cup \{\varphi_n\}$ has a model and m is the least number k such that the individual constant a_k does not occur in φ_n and not in any formula from Δ_n .

Finally, we define $\Delta := \bigcup_{n \in \mathbb{N}} \Delta_n$. We now observe that that Δ has the following properties :

(i) For every n, for every finite subset B of Γ , the set $B \cup \Delta_n$ has a model. We prove this by induction : for n = 0, we know $B \cup \Delta_0 = B$ has a model (as every finite subset of Γ has a model). Now, by induction hypothesis, assume $B \cup \Delta_{n-1}$ has a model. If we have the first case of the definition of Δ , then $\Delta_{n-1} = \Delta_n$ hence $B \cup \Delta_n$ has a model. If, instead, the second case applies, then $B \cup \Delta_{n-1} \cup \{\varphi_{n-1}\}$ has a model. Since $\Delta_n = \Delta_{n-1} \cup \{\varphi_{n-1}\}$,

 $B \cup \Delta_n$ has a model. For the third case, we have that $B \cup \Delta_{n-1} \cup \{\varphi_{n-1}\}$ has a model (say \mathfrak{A}) and m is the least number k such that the individual constant \mathbf{a}_k does not occur in φ_{n-1} and not in any formula from Δ_{n-1} . φ_{n-1} is of the form $\exists x[\psi]$, therefore, by the definition of L-structure, there exists a b in $B \cup \Delta_{n-1} \cup \{\varphi_{n-1}\}$ such that $\mathfrak{A} \models \phi(b)$. Now we shall expand the structure \mathfrak{A} with the constant \mathbf{a}_k (which was added to \mathcal{L}), having as *interpretation* b. Therefore, $B \cup \Delta_{n-1} \cup \{\varphi_{n-1}, S_{\mathbf{a}_k}^{\mathbf{a}}\psi\}$ has as model $(\mathfrak{A}, ..., b)$. Substituting $\Delta_n = \Delta_{n-1} \cup \{\varphi_{n-1}, S_{\mathbf{a}_k}^{\mathbf{a}}\psi\}$ gives us that $B \cup \Delta_n$ has a model.

- (ii) $\Gamma \subseteq \Delta$. Let $\varphi \in \Gamma$. Determine *m* such that $\varphi = \varphi_m$. Since $\varphi_m \in \Gamma$, therefore, for any finite subset *B* of Γ , $B \cup \{\varphi_m\}$ is a finite subset of Γ , therefore, by (i), $B \cup \Delta_m \cup \{\varphi_m\}$ has a model. By the construction of Δ , $\varphi_m = \varphi \in \Delta$.
- (iii) For every *n*, either the sentence φ_n belongs to Δ or the sentence $\neg \varphi_n$ belongs to *n*. Suppose φ_n does not belong to Δ , therefore, we can determine a finite subset B_0 of Δ such that $B_0 \cup \Delta_n \cup \{\varphi_n\}$ has no model. We then determine *m* such that $\varphi_m = \neg \varphi_n$. We claim that for every finite subset *B'* of Γ , the set $B' \cup \Delta_m \cup \{\varphi_m\}$ has a model. Indeed, $B_0 \cup B' \cup \Delta_m \cup \Delta_n$ has a model (say \mathfrak{A}) via (i), because either $\Delta_n \subseteq \Delta_m$ or $\Delta_m \subseteq \Delta_n$ and $B_0 \cup B' \cup \Delta_m \cup \Delta_n$ has no model, $\mathfrak{A} \models \neg \varphi_n$. Therefore, $B' \cup \Delta_m \cup \{\varphi_m\}$ has no model, therefore $\mathfrak{A} \nvDash \varphi_n$. By the definition of a model, $\mathfrak{A} \models \neg \varphi_n$. Therefore, $B' \cup \Delta_m \cup \{\varphi_m\}$ has as model \mathfrak{A} . By the construction of Δ , $\varphi_m \in \Delta_{m+1} \subset \Delta$.
- (iv) For all sentences ψ in \mathcal{L}' , $\neg(\psi)$ belongs to Δ if and only if ψ does not belong to Δ .

 (\Rightarrow) Say $\neg \varphi \in \Delta$, let $\varphi_m = \neg \varphi$ and let $\varphi_n = \varphi$. Since φ_m belongs to Δ , by the construction of Δ , for any subset B_0 of Γ , $B_0 \cup \Delta_m \cup \{\varphi_m\} = B_0 \cup \Delta_{m+1}$ must have a model, and contains φ_m . By (i), for any finite subset B_1 of Γ , $B_0 \cup B_1 \cup \Delta_{m+1} \cup \Delta_{n+1}$ has a model and contains φ_m . Hence, $B_0 \cup B_1 \cup \Delta_{m+1} \cup \Delta_{n+1}$ does not contain φ_n . Since n is the only stage at which φ_n could have been added, $\varphi_n = \varphi$ does not belong to Δ .

- (\Leftarrow) (iii).
- (v) For all sentences φ, ψ in $\mathcal{L}', (\varphi) \land (\psi)$ belongs to Δ if and only if φ and ψ both belong to Δ .

(\Rightarrow) We have that $(\varphi) \land (\psi)$ belong to Δ . Determine l such that $\varphi_l = (\varphi) \land (\psi)$, and determine m, n such that $\varphi_m = \varphi$ and $\varphi_n = \psi$. Since $\varphi_l = (\varphi) \land (\psi)$ belongs to Δ , for any finite subset B_0 of Γ , $B_0 \cup \Delta_l \cup \{\varphi_l\}$ has a model (by construction of Δ) and is equal to $B_0 \cup \Delta_{l+1}$. Now, by (i), for any subset B_1 of Γ , $B_0 \cup B_1 \cup \Delta_{l+1} \cup \Delta_{m+1}$ has a model. Since $B_0 \cup B_1 \cup \Delta_{l+1} \cup \Delta_{m+1}$ has a model and contains φ_l , we know that $\neg \varphi_m \notin B_0 \cup B_1 \cup \Delta_{l+1} \cup \Delta_m$ and hence $\neg \varphi_m$ is not in Δ (as it is only at stage m that it is added). Hence, by (iv), we have φ_m belongs to Δ . Similar method applies to n.

(\Leftarrow) We have that φ and ψ are in Δ , hence, by construction of Δ , for finite subsets B_0 and B_1 of Γ , $B_0 \cup \Delta_m \cup \{\varphi\}$ and $B_1 \cup \Delta_n \cup \{\psi\}$ have models and hence $B_0 \cup \Delta_{m+1}$ and $B_1 \cup \Delta_{n+1}$ have models, and each respectively contain φ and ψ . Determine l such that $\varphi_l = (\varphi) \land (\psi)$. By (i), we have that for any finite subset B_2 of Γ , $\Gamma^* := B_0 \cup B_1 \cup B_2 \cup \Delta_{m+1} \cup \Delta_{n+1} \cup \Delta_{l+1}$ has a model (say \mathfrak{A}). Since $\varphi \in \Gamma^*$ and $\psi \in \Gamma^*$, $\mathfrak{A} \models \varphi$ and $\mathfrak{A} \models \psi$, hence $\mathfrak{A} \models (\varphi) \land (\psi)$. Hence, by the construction of Δ , $(\varphi) \land (\psi) \in \Delta_{l+1} \subset \Delta$.

(vi) For any closed term t in $\operatorname{Term}(\mathcal{L}')$, t = t belongs to Δ . Let $\varphi_m = (t \neq t)$. At stage m, we verify for any finite subset B of Γ , if $B \cup \Delta_m \cup \{\varphi_m\}$ has a model. Since $(t \neq t)$ has no

model, therefore, $(t \neq t)$ does not belong to Δ . Hence, by (iii), (t = t) belongs to Δ .

- (vii) For any two closed terms t, t' and a term $\phi(x)$ of $\operatorname{Term}(\mathcal{L}')$, if t = t' and $\phi(t)$ belongs to Δ , then $\phi(t')$ belongs to Δ : determine $\varphi_m = (t = t')$ and $\varphi_n = \phi(x)$. For stage m, by construction of Δ , for any finite subset B_0 of Γ , $B_0 \cup \Delta_m \cup \{\varphi_m\} = B_0 \cup \Delta_{m+1}$ has a model. Similarly for stage n, we have that for any finite subset B_1 of Γ , $B_1 \cup \Delta_n \cup \{\varphi_n\} = B_1 \cup \Delta_{n+1}$ has a model. By (i), $B_0 \cup B_1 \cup \Delta_{m+1} \cup \Delta_{n+1}$ has a model. Now, determine l such that $\varphi_m = \neg \phi(t')$. Now, consider, for any finite subset B_2 of Γ , we know via (i) that $\Gamma^* := B_0 \cup B_1 \cup B_2 \cup \Delta_{m+1} \cup \Delta_{n+1} \cup \Delta_{l+1}$ has a model, and it contains (t = t') and $\phi(t)$. We observe that $\Gamma^* \cup \{\neg \phi(t')\}$ has no model, therefore, since l is the only stage that it $\varphi_l = \neg \phi(t')$ could have been added, $\neg \phi(t)$ does not belong to Δ . By (iii), $\phi(t')$ belongs to Δ .
- (viii) For all sentences φ of the form $\exists x[\psi(x)]$: the sentence $\exists x[\psi(x)]$ belongs to Δ if and only if there exists individual constant a_i such that the sentence $S^x_{a_i}$ belongs to Δ . This directly follows from the construction of Δ (from its third case).
- (ix) For any formula $\varphi(x)$ and for any constant c in \mathcal{L} , if $\phi(c)$ belongs to Δ , then the sentence $\exists x\phi(x)$ belongs to Δ : determine m such that $\varphi_m = \neg \exists x\phi(x)$, and determine $\varphi_n = \phi(c)$. Since $\varphi_n = \phi(c)$ belongs to Δ , by construction of Δ , for any finite subset B_0 of Γ , we know $B_0 \cup \Delta_n \cup \{\phi(c)\} = B_0 \cup \Delta_{n+1}$ has a model. At stage m, we observe, by (i), that for any finite subset B_1 of Γ , we have $\Gamma^* := B_0 \cup B_1 \cup \Delta_{n+1} \cup \Delta_{m+1}$ has a model, say \mathfrak{A} . We also observe that since $\phi(c)$ belongs to Γ^* , we have that $\Gamma^* \cup \{\neg \exists x[\phi(x)]\}$ has no model, therefore, $\neg \exists x[\phi(x)]$ does not belong to Δ as it could only be added at stage m. Therefore, by (iii), $\exists x[\phi(x)]$ belongs to Δ .

We construct $\mathcal{M} = (A, R_0^{\mathcal{M}}, \dots, R_{m-1}^{\mathcal{M}}, f_0^{\mathcal{M}}, \dots, f_{n-1}^{\mathcal{M}}, c_0, \dots, c_{p-1}^{\mathcal{M}}, a_0^{\mathcal{M}}, a_1^{\mathcal{M}}, \dots)$ realising Δ .

We first build the domain of the structure \mathcal{M} . Consider the set $\operatorname{Term}(\mathcal{L}')$ of all *closed* (individual) terms of the extended language \mathcal{L}' (an individual term is called *closed* if it does not contain any individual variable). We define a binary relation, \sim_{Δ} on this set as follows :

for all closed terms $s, t : s \sim_{\Delta} t :=$ the sentence s = t belongs to Δ

We now demonstrate that \sim_{Δ} is an equivalence relation on $\mathbf{Term}(\mathcal{L}')$:

- (i) *Reflexive* : directly follows from (vi).
- (ii) Symmetry : Take $\phi(t) = (t = c)$. By (vi), we have that $\phi(c) = (c = c)$ belongs to Δ . If (c = d) in Δ , by (vii), $\phi(d) = (d = c)$ belongs to Δ .
- (iii) Transitive : We have (a = b) and (b = c) in Δ . Take $\phi(t) = (a = t)$. By (vi), we have that $\phi(a) = (a = a)$ belongs to Δ . We also have $\phi(b) = (a = b)$ belongs to Δ . Since we have (b = c) in Δ , by (vii), we know that $\phi(c) = (a = c)$ belongs to Δ .

We define $A := \{[s] : s \in \text{Term}(\mathcal{L}')\}$. We also note an equivalence class always induces a partition on the underlying set (in this case, Δ).

We define the relations of the structure \mathcal{M} . For every i < m, for every sequence $(s_0, s_1, \ldots, s_{k_i-1})$ of elements of **Term** (\mathcal{L}') , we define :

 $\langle [s_0], [s_1], \ldots, [s_{k_i-1}] \rangle$ belongs to $R_i^{\mathcal{M}}$ if and only if $\mathsf{R}_i(s_0, s_1, \ldots, s_{k_i-1})$ belongs to Δ

This definition is unambiguous, as for all sequences $(s_0, s_1, \ldots, s_{k_i-1})$ and $(t_0, t_1, \ldots, t_{k_i-1})$ of elements of **Term**(\mathcal{L}'), if for each $j < k_i$, the sentence $s_j = t_j$ belongs to Δ , then the sentence $\mathsf{R}_i(s_0, s_1, \ldots, s_{k_i-1})$ belongs to Δ if and only if the sentence $\mathsf{R}_i(t_0, t_1, \ldots, t_{k_i-1})$ in Δ .

Next, we define the functions of the structure \mathcal{M} . For every j < n, for every sequence $(s_0, s_1, \ldots, s_{l_j-1})$ of elements of **Term** (\mathcal{L}') , we define :

$$f_j^{\mathcal{M}}([s_0], [s_1], \dots, [s_{k_i-1}]) := [\mathsf{F}_j(s_0, s_1, \dots, s_{k_i-1})]$$

This definition is unambiguous, as for all sequences $(s_0, s_1, \ldots, s_{k_i-1})$ and $(t_0, t_1, \ldots, t_{k_i-1})$ of elements of $\mathbf{Term}(\mathcal{L}')$, if for every $i < l_j$, the sentence $s_i = t_i$ belongs to Δ , then the sentence $\mathsf{F}_i(s_0, s_1, \ldots, s_{l_j-1}) = \mathsf{F}_j(t_0, t_1, \ldots, t_{l_j-1})$ belongs to Δ . Hence, this definition is equivalent to $f_j^{\mathcal{M}}([s_0], [s_1], \ldots, [s_{k_i-1}]) = [t]$ if and only if $\mathsf{F}_j(s_0, s_1, \ldots, s_{k_i-1}) = t$ belongs to Δ .

Finally, we interpret the individual constants of \mathcal{L}' . For each i < p, we define $c_i^{\mathcal{M}} := [\mathsf{c}_i]$. For each i, we define $a_i^{\mathcal{M}} := [\mathsf{a}_i]$. This completes the definition of the structure \mathcal{M} .

Now, we wish to prove that that for every term $t = t(x_0, \ldots, x_n)$ for every sequence s_0, s_1, \ldots, s_n of elements of **Term**(\mathcal{L}'):

$$\mathcal{M} \vDash \varphi[[s_0], [s_1], \dots, [s_n]]$$
 if and only if $\varphi(s_0, s_1, \dots, s_n)$ belongs to Δ

We begin with proving this claim for basic formulas via induction. We will also use the properties (i) to (viii). We will use $t^{\mathcal{M}}$ to denote the equivalence class containing a closed term t.

Lemma 1 For any term $t = t(x_0, \ldots, x_n)$, for any sequence a_0, \ldots, a_n of the elements **Term**(\mathcal{L}'):

$$t^{\mathcal{M}}[[a_0], \dots, [a_n]] = [t(a_0, \dots, a_n)]$$
 (1)

Note that this statement is equivalent to $t^{\mathcal{M}}([a_0], \ldots, [a_n]) = [b]$ if and only if $t(a_0, \ldots, a_n) = b$ belongs to Δ .

Proof. We prove this claim by induction on the construction of t. For simplicity, we will write the proof as if t contains at most one free variable. The general case only involves more complicated notation. Also, we have to remind ourselves the definition of a term, which is either an individual variable, an individual constant, or the finite application of functions to finitely many individual variables and constants.

- (i) If t is a constant symbol c, then $t^{\mathcal{M}} = c^{\mathcal{M}} = [c]$. By the definition of the equivalence relation \sim , [c] = [d] if and only if c = d belongs to Δ .
- (ii) t cannot possibly be a variable, as it a closed term in \mathcal{L}' .
- (iii) We suppose the result has been proven for terms t_0, \ldots, t_{n-1} , and we let f be a function symbol. For each i, the sentence $\exists y[t_i(c) = y]$ is a tautology, and therefore is contained in Δ . By construction of Δ , there exists a constant \mathbf{e}_i (one of added constants \mathbf{a}_k for some arbitrary k) such that $t_i(c) = \mathbf{e}_i$. By induction hypothesis, we have $t^{\mathcal{M}}([c]) = [\mathbf{e}_i]$.

Thus, we have the following :

$$\begin{aligned} \mathsf{F}_{j}(t_{1},\ldots,t_{n})^{\mathcal{M}}([c]) &= [d] & \text{iff} \quad f_{j}^{\mathcal{M}}(t_{1}^{\mathcal{M}}[c],\ldots,t_{n}^{\mathcal{M}}[c]) = [d] & \text{(Definition of } L-\text{structures.)} \\ & \text{iff} \quad f_{j}^{\mathcal{M}}([\mathbf{e}_{1}],\ldots,[\mathbf{e}_{n}]) = [d] & \text{(Induction Hypothesis)} \\ & \text{iff} \quad \mathsf{F}_{j}(\mathbf{e}_{1},\ldots,\mathbf{e}_{n}) = d \in \Delta & \text{(Definition of } \mathcal{M}) \\ & \text{iff} \quad \mathsf{F}_{j}(t_{0}(c),\ldots,t_{i}(c)) = d \in \Delta & \text{(By property (vi)))} \\ & \text{iff} \quad \left[\mathsf{F}_{j}(t_{0}(c),\ldots,t_{i}(c))\right] = [d] & \text{(Definition of } [d_{i}] \end{aligned}$$

Now that we have proven (1), we now prove it for the relations of \mathcal{M} .

Lemma 2 For any formula ϕ with free variables in \vec{x} and constant symbols c_1, \ldots, c_n ,

$$\mathcal{M} \vDash_{\vec{x}} \phi([c_0], \dots, [c_n]) \quad \text{iff} \quad \phi(c_1, \dots, c_n) \in \Delta$$

$$\tag{2}$$

We prove this claim by induction on the construction of ϕ . In some steps, we will write the formula ϕ as if it only has one free variable x; but the proof generalizes directly to the case of any number of free variables.

(i) In the case $\phi(x)$ has the form $t_1(x) = t_2(x)$: Since the sentence, $\exists y[t_i(c) = y]$ is a tautology, we know it belongs to Δ . Hence, by construction of Δ , there must be a constant d such that $t_i(c) = d_i \in \Delta$. By (1), we have that $t_i^{\mathcal{M}}([c]) = [d_i]$ for i = 1, 2. Thus,

$M \vDash \phi(c)$	iff	$t_1^{\mathcal{M}}([c]) = t_2^{\mathcal{M}}([c])$	(Definition of L -structures)
	iff	$[d_1] = [d_2]$	$(t_i^{\mathcal{M}}([c]) = [d_{i}])$
	iff	$d_1 \sim_\Delta d_2$	(Definition of $\left[d_{i}\right]$)
	iff	$d_1=d_2\in\Delta$	(Definition of \sim_{Δ})
	iff	$t_1(d_1) = t_1(d_2) \in \Delta$	$(t_i(c_i) = d_i)$

(ii) Suppose that $\phi(x)$ of the form $\mathsf{R}_i(t_1(x), \ldots, t_n(x))$. Using the method used earlier, we can find constant symbols $\mathsf{d}_1, \ldots, \mathsf{d}_n$ such that $t_i(x) = \mathsf{d}_i$ for $i = 1, \ldots, n$. By (1), we have that $t_i^{\mathcal{M}}([\mathsf{c}]) = [\mathsf{d}_i]$. Thus,

$\mathcal{M} \vDash \phi(x)$	iff	$\langle t_1^{\mathcal{M}}([c]), \dots, t_i^{\mathcal{M}}([c]) \in R_i^{\mathcal{M}}$	(Definition of L -structures)
	iff	$\langle [d_1], \dots, [d_i] \rangle \in R_i^\mathcal{M}$	$(t_i^{\mathcal{M}}([c]) = [d_i])$
	iff	$R_i(d_1,\ldots,d_i)\in\Delta$	(Definition of $R_i^{\mathcal{M}}$)
	iff	$R_i(t_1(c),\ldots,t_i(c))\in\Delta$	(Definition of $R_i^{\mathcal{M}}$)

(iii) Suppose $\phi(x)$ is of the form $\varphi(x) \wedge \psi(x)$. By induction hypothesis, we suppose that the claim (2) has been proven for (φ) and (ψ) . We show that the claim holds for $\varphi(x) \wedge \psi(x)$:

$$\mathcal{M} \vDash \varphi(x) \land \psi(x) \quad \text{iff} \quad \mathcal{M} \vDash \varphi(x) \text{ and } \mathcal{M} \vDash \psi(x) \qquad (\text{ defn of } L-\text{structures })$$
$$\text{iff} \quad \varphi(x) \in \Delta \text{ and } \psi(x) \in \Delta \qquad (\text{ Inductive Hypothesis })$$
$$\text{iff} \quad \varphi(x) \land \psi(x) \in \Delta \qquad (\text{ By property } (\mathbf{v}))$$

(iv) Suppose the claim holds for $\phi(x)$. We prove it holds for $\neg \phi(x)$:

$\mathcal{M} \vDash \neg \phi(x)$	iff	$\mathcal{M}\nvDash\phi(x)$	(defn of L -structures)
	iff	$\phi(x)\not\in\Delta$	(Induction Hypothesis)
	iff	$\neg \phi(x) \in \Delta$	(Property (iv))

(v) For the case of the existential quantifier, we consider a formula $\phi(x)$ with one free variable. Supposing the claim has been proven true for $\phi(x)$, we show that it also holds for $\exists x \phi(x)$:

$$\begin{aligned} \mathcal{M} \vDash \exists x \phi(x) & \text{iff} \quad \mathcal{M} \vDash \phi([s]) \text{ for } [s] \in A; \text{ } s \text{ is closed term in } \mathcal{L}' & (\text{ defn of } L-\text{structures }) \\ & \text{iff} \quad \phi(s) \in \Delta & (\text{ Induction Hypothesis }) \\ & \text{iff} \quad s = \mathsf{a}_k^{\mathcal{M}} \text{ for some } k \in \mathbb{N} \text{ and } \exists x \phi(x) \in \Delta & (\text{ Construction of } \Delta) \end{aligned}$$

Now we have proven (2), and by property (ii), we have that Γ has as model \mathcal{M} .

References

- Hans Halvorson. Compactness Theorem. https://www.princeton.edu/~hhalvors/ teaching/phi312_s2013/compactness.pdf.
- [2] David Marker. *Model theory: An Introduction*. Vol. 217. Springer Science & Business Media, 2006.